Introduction

A combination of resources supports student teams consisting of physics majors and non-majors. The first is a rich array of supplies and equipment spanning 52 applied-physics technologies. This is called the Innovation Hyperlab and is much more than a maker space. The second is an emerging webbased modular curriculum for on-demand learning technical competencies needed to develop prototypes. The third is an organization of physics student innovators who will make physics-based resources accessible to a wider population of innovators

Specialized Resource Examples

Advanced measurement instruments such as lockin amplifiers & network analyzers.

Microscopes & micro-probes, such as an atomic force microscope.

Optoelectronics, including lasers, light modulators, detectors and fiber optics.

Vacuum pumps and vapor deposition systems.

Spectrometers and interferometers.

RF and microwave sources and instruments.

Fluid measurement systems such as laser doppler velocimetry.

Imaging and image-processing systems

Plus capacities to alter and adapt such equipment beyond "turn-key" use.

Example: imaging particle sensor

An ongoing physics student project aims to couple a fiber-optic scintillator bundle to a CCD array and image particle tracks, first testing the system with cosmic rays and then applying to terrestrial and industrial radiation sources. --

Physics Resources Supporting Innovation Teams

Randall Tagg Physics Department, University of Colorado Denver

The Innovation Hyperlab 1.0

The Technologies

Foundations 1. Safety & hazardous materials

- 2. Early prototyping 3. Common tools
- General technical issues
- 4. Materials
- 5. Traditional manufacturing
- 6. Advanced manufacturing
- 7. Structural systems
- 8. Rigging & materials handling
- 9. Buildings & infrastructure
- 10. Energy systems
- 11. Measurement & standards
- 12. Sensors

Mechanics

- 13. Mechanisms
- 14. Actuators
- 15. Vehicles
- 16. Rotating systems
- 17. Vibration & chaos 18. Sound & ultrasound

- 19. Fluid systems
- 20. Thermal systems
- 21. Vacuum & high press

Electronics

- 22. Electronic componen measurement
- 23. Analog signals
- 24. Active devices
- 25. Digital electronics
- 26. Microcontrollers
- 27. Human interfaces
- 28. Radio-frequency elec
- 29. Remote control & tel
- 30. Microwave systems

Computers, control & a instrumentation

- 31. Computers
- 32. Data storage
- 33. Networks & data corr
- 34. Control systems
- 35. Automation

https://sites.google.com/site/inventorsyeara/

	37. Digital signal processing		Foste
	38. Advanced detection &		achie
sure	measurement		
	39. High-throughput data handling		Incul
nts &	Optics, fields & particles		
	40. Optical systems		Dian
	41. Optoelectronics & lasers		Disp.
	42. Imaging		
	43. Magnetic fields & superconductors		Main
	44. Electrical fields & plasmas		
	45. Particle beams & detectors		
etronics	46. Health physics &		
lemetry	nuclear instrumentation		_
	Micro- and nanotechnology		Ex
advanced	47. Microscopy & micromanipulation		sys
	48. Microfabrication & thin films		tec
	49. Microdevices & lab-on-a-chip		Līn
	50. Nanoscale microscopy &		
nmunication	measurement		Stu
	52. Nanoparticles & self-assembly		
	52. Nanodevices		dev

Physics Student Innovators (* and alumni) PSI*

The mission of Psi* is to bring physics students' inventiveness to fruition by means of logistic, financial, and creative support; to foster awareness in employers, investors, and the regional community of the unique and advantageous potential for innovation by physics students and graduates alike; and to encourage physics alumni to use their experience to aid current student innovators.

PSI* GOALS

Excite interest in connecting physics with innovation.

Engage physics students as innovators.

Connect with employers and community.

ter technical competencies and evements.

bate physics student ventures.

play and disseminate.

ntain integrity and openness.

xample: student project in dynamical stems approaches to medical assistive chnology

niversity physics students and high school idents explored dynamical systems proaches to robotic assistive devices and vices to counter-act neuromuscular tremors.