Design for Product Lifetime

Access a product's components.

Design for Disassembly

Ensure products are easy to take apart quickly.

- **Parts**
 - Minimize the number of parts.
 - Simplify structure and form.
 - Use ferromagnetic materials to enable sorting and disassembly.

- **Tools & Fasteners**
 - Require only a few standard tools.
 - Avoid requiring tools for the most common actions.
 - Minimize the number and variety of fasteners.
 - Use intuitive snap-fits, clips, or sliding connections.
 - Design connections that are visually and physically accessible.
 - Access fasteners from the same axis.
 - Hold multiple parts with one fastener.
 - Use coarse threaded screws for speed; use nuts and bolts for strength.
 - Use human-scale fasteners.
 - Avoid glues, and use only glues that are easily soluble or heat reversible.
 - Ensure fasteners are adequate for structural integrity.
 - Use fasteners that will hold up over repeated use.

- **Documents**
 - Embed clear, graphical disassembly instructions onto the product.
 - Document materials and methods for deconstruction for the user.

Design for Repair

Ensure product repair is simple for everyone.

- **Product Architecture**
 - Use modular assemblies that enable the replacement of discrete components.
 - Ensure easy access to parts likely to need maintenance.
 - Use self-locating parts.
 - Use robust connectors.
 - Label and color-code parts to enable troubleshooting.
 - Standardize between product lines and across generations.

- **Documents**
 - Make technical documentation freely available or open-sourced.
 - Include parts list and part numbers.
 - Create user interfaces and troubleshooting tools to diagnose problems.

- **Business**
 - Make repair and services options clear to customers.
 - Consider repair-friendly warranty terms.
 - Make replacement parts available and affordable.

Design for Upgrade

Keep products relevant and useful longer.

- **Product Architecture**
 - Use standard-size modular parts to enable interchangeability and customization.
 - Design easy access to parts likely to become obsolete.
 - Use standard, cross-platform connections (for example, USB).

- **Documents**
 - Build diagnostic tools to help users understand the components that are limiting performance.

Design for Recycling

Make it easy to properly dispose of the product.

- **Materials**
 - Choose materials that are recycled everywhere.
 - Minimize the number of materials used. When possible, use only one.
 - Label parts with recycling codes or other permanent ways to identify materials.
 - Avoid paints, additives, and surface treatments. Use inherent color.
 - Avoid combinations of materials that are difficult to separate.
 - Make it easy to separate components that are hazardous, toxic, or not conventionally recyclable.

- **Business**
 - Specify the use of recycled materials in your products (this also helps stimulate demand for recycling).
 - Create easy take-back programs to ensure proper disposal of complicated products.

Design for Remanufacturing

Enable reuse of old components in new products.

- **Business**
 - Create product-as-service business model.
 - Design smooth touchpoints between the company and users.
 - Design a quality-control system for testing returned components.